线性代数

  线性代数是一门被广泛运用于各个工程技术学科的数学分支,利用线性代数的相关概念和结论,可以极大的简化机器学习里相关公式的推导和表述。

1. 基本概念

在numpy中,可以用以下方式生成各种维度的张量:

>>> import numpy as np
## 生成元素全为0的二维张量,两个维度分别为3,4
>>> np.zeros((3,4))
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
## 生成三维的随机张量,三个维度分别为2,3,4
>>> np.random.rand(2,3,4)
array([[[ 0.93187582,  0.4942617 ,  0.23241437,  0.82237576],
        [ 0.90066163,  0.30151126,  0.89734992,  0.56656615],
        [ 0.54487942,  0.80242768,  0.477167  ,  0.6101814 ]],

       [[ 0.61176321,  0.11454075,  0.58316117,  0.36850871],
        [ 0.18480808,  0.12397686,  0.22586973,  0.35246394],
        [ 0.01192416,  0.5990322 ,  0.34527612,  0.424322  ]]])


>>> np.eye(4)
array([[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]])

2. 常用运算

## 生成一个包含整数0~11的向量
>>> x = np.arange(12)
>>> x
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> x.shape
(12,)
## 将x转换成二维矩阵,其中矩阵的第一个维度为1
>>> x = x.reshape(1,12)
>>> x
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11]])
>>> x.shape
(1, 12)
## 将x转换3x4的矩阵
>>> x = x.reshape(3,4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
## 生成包含5个元素的向量x并将其转置
>>> x = np.arange(5).reshape(1,-1)
>>> x
array([[0, 1, 2, 3, 4]])
>>> x.T
array([[0],
       [1],
       [2],
       [3],
       [4]])
## 生成3*4的矩阵并转置
>>> A = np.arange(12).reshape(3,4)
>>> A
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> A.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
## 生成2*3*4的张量
>>> B = np.arange(24).reshape(2,3,4)
>>> B
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
## 将B的01两个维度转置
>>> B.transpose(1,0,2)
array([[[ 0,  1,  2,  3],
        [12, 13, 14, 15]],

       [[ 4,  5,  6,  7],
        [16, 17, 18, 19]],

       [[ 8,  9, 10, 11],
        [20, 21, 22, 23]]])

对于张量来说,transpose和reshape都是非常常见又容易混淆的概念,reshape改变的是张量的形状,即张量各个维度上元素个数的分配,但对每一个元素来说,它相对于张量首个元素的间隔是不变的,对任一个张量,无论怎么样reshape,它进行flatten之后都是不变的;而transpose改变的是维度的方向,而不改变张量的形状,但是flatten之后会发生变化。

>>> A = np.arange(6).reshape(3,2)
>>> B = np.arange(6).reshape(2,3)
>>> A
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> B
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.matmul(A,B)
array([[ 3,  4,  5],
       [ 9, 14, 19],
       [15, 24, 33]])
>>> A = np.arange(6).reshape(3,2)
>>> A*A
array([[ 0,  1],
       [ 4,  9],
       [16, 25]])
>>> A + A
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])
>>> A + A
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])

在numpy和tensorflow等运算库中,通常将element-wise operation的符号记为对应的四则运算符号,例如A*B表示的是element-eise product,而矩阵乘法则用matmul表示

>>> A = np.arange(4).reshape(2,2)
>>> A
array([[0, 1],
       [2, 3]])
>>> np.linalg.inv(A)
array([[-1.5,  0.5],
       [ 1. ,  0. ]])